
Introduction to Smart 
Contracts & Soroban

Soroban Quest:



Who has used the blockchain before?

Maybe you’ve owned crypto, made a DApp, created 
an NFT.

Let’s see who’s here?



Who has written a smart contract 
before?

Let’s see who’s here?



What are smart contracts?

Programs that run in the blockchain.

They can be as simple as “Hello World” or as 
complex as an entire application.

Soroban is a platform to write smart contracts on 
the Stellar blockchain, using the Rust programing 
language.

Stellar is a blockchain that’s is 
faster, cheaper, and far more 
energy-efficient than most 
blockchain-based systems.

Rust is a compiled programming 
language built for efficiency.



Verifiable Because contracts are kept on the blockchain, you 
can see what they do and be guaranteed the terms 
won’t change.

Fast Contracts can be executed in near real-time, meaning 
you don’t need a human to check their email or a 
bank to transfer funds.

Direct Because contracts are executed by code, it can 
remove the need for third parties (like bankers or 
Escrow companies) to verify terms and take action.

On Chain As you’re already on a blockchain, it’s easy to move 
tokens on that chain, even across borders.

Why use smart contracts?



Why use smart contracts?

Imagine being able to write a smart contract with your roommates that 
automatically splits rent each month and pays your landlord.

Because it’s verifiable your roommates could see what they were 
agreeing to easily.

Because it’s fast it would do it immediately when rent is due.

Because it’s direct it would automatically work without you needing to 
involve your bank, setting up a shared account.

Because it’s on chain it has access to tokenized financial infrastructure 
easily, so even as a foreign exchange student it’s easy to pay.

Verifiable

Fast

Direct

On Chain



What are some other uses for smart contracts 
that you can think of?

Remember they are verifiable, fast, direct, and 
on chain.

Why use smart contracts?



Together, we’ll write a 
smart contract.
Along with Blossom Bernice Breydenblach & Roscoe…



Getting Started

Go To:
https://hackp.ac/sq

Click
OPEN IN GITPOD ›

Login or Create
a GitPod account

Select VS Code (Browser) as your editor.



Login to Soroban Quest

In the Terminal pane of Gitpod, type:

If you get an error, try:

You’ll need a Discord account to login.

sq login

sq user



Questing Basics
Each quest has a directory with a README, 
explaining the entire quest.

We’re working on the first quest.

If it’s not already open, in the quests folder:

Open
1-hello-world

To start a quest, you run a terminal 
command.

Start the first quest, in the Terminal, type:

sq play 1



Creating a Wallet
sq play creates a crypto wallet for you on 
the Stellar Testnet. 

Whenever you’re creating something on 
the blockchain, you’ll need a wallet to 
connect to it and prove ownership.

It’s important that you save your wallet 
Public & Secret Keys.

testnet is a blockchain used for testing. 
It’s similar to a sandbox or test 
environment. It does not use real 
money/tokens.

KEEP YOUR SECRET KEY SAFE - NEVER SHARE IT
Your Secret Key (often also called a Private Key) is used to cryptographically identify you. 
It’s like a password, but it can’t easily be changed, so it’s important that you store it 
somewhere safe and ensure no one else gets ahold of it.



Funding Your Account
Because Smart Contracts are programs 
running on the blockchain, when you 
execute one, you’re using someone else’s 
computer to run code.

Similar to how you might pay for a cloud 
provider like AWS or Azure, you pay for the 
computing power you use on Soroban.

Soroban gives you free testnet funds:

Select
Yes please!



Write a Contract
Soroban contracts are code written in Rust.

Soroban Quest 1 has a simple Hello World 
Contract.

Open
src/lib.rs

This contract has a function hello().

The hello() function takes a short string and 
returns a vector:

[“Hello”, <string>]

vector is a Rust datatype, similar to a 
Python List or a Javascript Array



A Little Housekeeping

Before we proceed, there is a minor edit 
we need to make to the Soroban Quest 
repository before moving forward.

We recently discovered a bug associated with the Quest 5 files in this 
repository, and while the Soroban team works to resolve that bug, this 
work around will allow us to continue to the next step free of errors. 

Open
Cargo.toml

Within that file, you’ll see a members array. 

Go ahead and delete 
“quests/5-custom-types”, from the array.



Build a Contract
Rust is a compiled language, so in order to 
get this contract onto the Soroban 
blockchain we have to compile it into 
WebAssembly (often simply called Wasm).

To compile our contract, first move to the 
right directory:

cd quests/1-hello-world

Now, run:

soroban contract build



Deploying our Contract
So far, we have a contract that has been written, then compiled to Wasm, now we need to get 
it onto the Stellar blockchain.

The last command compiled our contract for a 32 bit WebAssembly architecture, the compiled 
file is at: target/wasm32-unknown-unknown/release/soroban_hello_world_contract.wasm

We need to deploy our contract to the 
Stellar testnet.

Run the deploy command for our file:

soroban contract deploy --wasm 
../../target/wasm32-unknown-unknown/release/soroban_hello_world_contract.wasm

This will give you an alphanumeric
Contract Address.



Invoking our Contract
Once deployed, all that’s left is to run the 
code in our contract!

Invoke the contract, running the hello function:

soroban contract invoke --id <contract_addr> -- hello --to "You"



soroban contract invoke This command creates an interface to call smart contract functions.

--id <contract_addr> Specifies the address of the contract.
You should substitute <contract_addr> with the address of your contract 
that you got from the soroban contract deploy command.

-- This passes any future input to the contract you’ve invoked.

hello The name of the function you want to run.

--to The name of the argument from your Rust function.

"You" The string you’re passing in the to argument.
You can change this to anything you want as long as it’s less than 32 
characters.

Understanding our Invocation
What happened when we ran our command?

soroban contract invoke --id <contract_addr> -- hello --to "You"



You did it! You just deployed a Smart 
Contract and ran it on the blockchain!

Great work!

Completing a Soroban Quest earns you 
NFTs, let’s complete it!

Completing the Quest

sq check 1



What’s next?
Keep learning and building on Soroban…



Now that you’ve deployed your first contract on Soroban, you can keep going to build larger 
contracts and full applications.

Resources

1. Keep Building on Soroban Quest
Soroban Quest will lead you through more core concepts on Soroban, you can try it 
yourself, by going on to 2-auth-store or you can follow walkthroughs like what we just did 
by going to: https://hackp.ac/sorobanquest-helloworld

2. Read the Soroban Docs
Soroban has great docs that will help you understand Soroban Quest and how to use 
Soroban: https://hackp.ac/soroban-docs

3. Better Understand Rust
Soroban uses Rust to create Smart Contracts, to get great at creating them, it’s helpful to 
know how the language works, you can checkout some great resources:
Rust by Example: https://doc.rust-lang.org/rust-by-example/
A Gentle Introduction to Rust: https://stevedonovan.github.io/rust-gentle-intro/

https://hackp.ac/soroban-docs

